范明政总理:数字化助力—绿色化推广—企业突破—国家远航 苏林总书记:侨胞携手共建日益繁荣幸福的祖国 苏林总书记访柬:不断增进越柬深情厚谊 范明政总理:着力成功落实党“十四大”《决议》 推动国家稳步迈入新发展纪元 苏林总书记圆满结束对柬埔寨王国的国事访问 苏林总书记见证越柬合作文件签署和交换仪式 越南共产党中央总书记苏林及越南高级代表团对柬埔寨进行国事访问 越南共产党中央总书记苏林抵达柬埔寨 开始对该国进行国事访问 党中央总书记苏林启程对柬埔寨王国进行国事访问 越南政府总理范明政与老挝总理宋赛·西潘敦会晤 苏林总书记对老挝的国事访问圆满结束

麻省理工開發提早 5 年預測乳腺癌風險工具

麻省理工(MIT)電腦科學與 AI 實驗室(MIT CSAIL)開發出一款風險預測 AI 模型,可以識別乳房組織的細微變化,並確定在未來5年發展為乳腺癌的可能性。
麻省理工(MIT)電腦科學與 AI 實驗室(MIT CSAIL)開發出一款風險預測 AI 模型,可以識別乳房組織的細微變化,並確定在未來5年發展為乳腺癌的可能性。
麻省理工(MIT)電腦科學與 AI 實驗室(MIT CSAIL)開發出一款風險預測 AI 模型,可以識別乳房組織的細微變化,並確定在未來5年發展為乳腺癌的可能性。
據瞭解,這款深度學習模型接受了超過 9 萬張乳房 X 光照片的訓練,也因此能在 X 光照片中辨識出人類醫生無法辨識出的微小圖案,以目前來說,能夠辨識出 31% 在未來 5 年發展為乳腺癌風險最高的患者。雖然比例聽起來並不高,但與現行醫生可用的任何模型相比(早期階段只能辨識出 18%),結果明顯要好上許多。

研究共同作者 Constance Lehman 表示,自 1960 年代以來,放射科醫生便已經注意到女性乳房 X 光照片上可見的乳房組織有獨特和廣泛變化的模式,而這些模式會受到可以遺傳、荷爾蒙、懷孕、哺乳、飲食、體重減輕或增加等多種因素的影響,一旦能夠運用這些詳細資訊,對個別女性的風險評估將能更加準確。

除此之外,新的 AI 模型還有另一個優勢。由於過去多數評估工具在訓練過程中使用的數據多來自白人群體,因此對非白人患者的評估效果較差,而新 AI 則沒有這項問題。
史丹佛大學醫學院 Allison Kurian 表示,這次的模型最令人驚艷的地方便在於此,與現有的風險評估工具不同,這款 AI 使用在黑人和白人身上表現一樣出色。“如果經過認證且使工具廣泛使用,將可以真正改善我們目前估算風險的策略。”

儘管系統在實用前還需進行廣泛驗證,但深度學習模型可以透過訓練辨認出乳房 X 光照片數據中的模式,而人類靠肉眼並無法做到,隨著訓練數據越大,模型辨認的結果也將更加準確,可想見未來在預測應用上將更為廣泛◆

相关阅读